
Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Model-Driven Data Warehousing

Integrate.2003, Burlingame, CA

Wednesday, January 29, 16:30-18:00

John Poole

Hyperion Solutions Corporation

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Why Model-Driven Data Warehousing?

Problem statement:

Data warehousing is one of most challenging areas for
integration of diverse, multi-vendor tools and applications.

Data warehousing projects offer significantly enhanced
return-on-investment (ROI) when successfully integrated.

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Standards-Based Approach to Model-
Driven Data Warehousing

Object Management Group standards for modeling and
model interchange: MDA, UML, MOF, XMI, CWM.

Java Community Process interface/platform standards:
J2EE, JMI, JOLAP, JDMAPI.

Other: W3C XML, XSD, Web services models.

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Of course, the truly important question
is…

How can these various standards be combined together to
provide seamlessly integrated data warehousing, business
intelligence, and information supply chain environments?.

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Session Overview

This session provides an overview of how the complete
evolution of a data warehouse might be realized using
OMG MDA and Java platform standards:

• Conceptualization and design (logical and physical
modeling)

• Configuration, generation and deployment

• Ongoing operations and maintenance

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Session Overview (continued)

Particular emphasis is placed upon:

• CWM and standard meta data patterns

• Centralized, model repositories

• Automated schema generation and tool initialization

• Platform models based on Java™ 2 and XML standards

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

• A common metamodel of the data warehousing and
business intelligence domain

• Consists of a platform-independent metamodel
definition

• Includes an XML-based inter-change format for
metadata

• Also includes a mapping to a platform-independent
API specification (CORBA IDL)

• Tools that standardize on CWM can readily share
metadata via CWM-compliant XML files

Common Warehouse Metamodel
(CWM):

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

• A Java Community Process (JCP) effort to develop a
standard Java API for metadata access and
management

• Provides a standard metadata management API for the
Java 2 Platform, Enterprise Edition (J2EE)

• Defines a formal mapping from any OMG standard
metamodel (such as CWM) to Java interfaces

• Supports advanced metadata services, such as
reflection and dynamic programming

• Tools that standardize on OMG metamodels (such as
CWM) and are deployed in the J2EE environment have
a standard Java API to use for metadata access and
management

Java Metadata Interface (JMI):

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

• A Java Community Process (JCP) effort to develop
a standard Java API for access to OLAP servers
and multidimensional databases

• Provides a standard OLAP API for the Java 2
Platform, Enterprise Edition (J2EE)

• Uses the CWM OLAP metamodel as the basis for
defining OLAP metadata

• Leverages JMI for managing OLAP metadata
• Introduces comprehensive OLAP query and result

set models as the basis for OLAP inquiry and data
retrieval

Java OLAP Interface (JOLAP):

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

• A Java Community Process (JCP) effort to develop a
standard Java API for access to data mining tools

• Provides a standard Java API for access to tools for
building data mining models, scoring of data using
models, as well as creation, storage, access and
maintenance of data and metadata supporting data
mining results and transformations

• Like JOLAP, JDMAPI defines a metamodel for data
mining metadata that is based on the CWM Data Mining
model

• The JDMAPI effort has also contributed significantly
back to CWM (in CWM 1.1, which has adopted the
JDMAPI metamodel as its own)

Java Data Mining API (JDMAPI):

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

• Web-centric access mechanism for OLAP services
• Based on the W3C’s eXtensible Markup Language

(XML)
• OLAP API is formulated in XML
• Protocol is based on the Simple Object Access

Protocol (SOAP)
• Eliminates the need for any “heavy” client-side

components
• Supports MDX and any other provider-specific

OLAP languages

XML for Analysis (XMLA):

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Management of the Model-Driven Data
Warehouse

Primary elements consist of:

• Meta data service initialization

• Model construction

• Tool initialization

• Metamodel interoperability

• Data warehouse information flow

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Meta Data Service Initialization

Key Components:

• Centralized meta data is handled in terms of shared
models based on a common metamodel

• The common metamodel is CWM

• A JMI-enabled meta data service provides the central
meta data (model) store for the data warehouse

• Access to JMI service via the J2EE ™ Connector
Architecture

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Meta Data Service Initialization (cont)

Key Events:

• Connect to JMI service

• Download the common metamodel from publishing
source (i.e., CWM rendered in XMI from OMG Web site)

• Initialize the model repository (load the metamodel)

• Generate the repository (i.e., create and launch a meta
data server)

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Meta Data Service Initialization (cont)

JMI-Enabled
Metadata
ServiceData Warehouse

Administration Console

OMG Web server

Internet

HTTP request

HTTP request

Connection establish-
ment and JMI
XMIReader calls

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Meta Data Service Initialization (cont)

public interface com.mdservice.Connection {

public void close() throws com.mdservice.ResourceException;

public javax.resource.cci.ConnectionMetaData getMetaData()
throws com.mdservice.ResourceException;

public javax.jmi.reflect.RefPackage getTopLevelPackage()
throws com.mdservice.ResourceException;

public javax.jmi.xmi.XmiReader getXmiReader()
throws com.mdservice.ResourceException;

public javax.jmi.xmi.XmiWriter getXmiWriter()
throws com.mdservice.ResourceException;

}

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Meta Data Service Initialization (cont)

ConnectionFactory cxf = new ConnectionFactory();
Connection cx = cxf.getConnection(properties);
RefPackage msTlp = Connection.getTopLevelPackage();
XmiReader xmiReader = Connection.getXmiReader();
xmiReader.read("http://cgi.omg.org/docs/ad/01-02-03.txt", msTlp);

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Meta Data Service Initialization (cont)

Management

Analysis

Resource

Foundation

Object Model

Warehouse Process Warehouse Operation

OLAP Data Mining Information
Visualization

Business
NomenclatureTransformation

Object Relational Record Multidimensio
nal XML

Business
Information Data Types Expressions Keys and

Indexes
Software

Deployment
Type

Mapping

Core Behavioral Relationships Instance

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Model construction

Key Components/Events:

• CWM-aware visual modeling tool

• Modeler constructs a complete data warehouse model by
selecting and connecting modeling elements from various
CWM packages

• Completed model is published to environment via the
meta data service

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Model construction (cont)
CWM packages used:

• Record package: Model the raw data feeds

• Relational package: Model ODS and dimensional store

• Transformation package: Model data transformations and
source-target mappings

• OLAP package: Model multidimensional abstractions for
analysis and reporting

• Warehouse Process and Warehouse Operation packages:
Model ETL and other warehouse management and event
recording processes

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Model construction (cont)

JMI-Enabled
Metadata
ServiceMetadata Visual

Modeling Tool

Connection establishment and
JMI metamodel-specific
(tailored) interface calls

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Model construction (cont)

// Get the DimensionClass proxy
org.omg.java.cwm.analysis.olap.DimensionClass

dc = olapPkg.getDimension();

// Create a Time Dimension

org.omg.java.cwm.analysis.olap.Dimension
timeDim = dc.createDimension();

timeDim.setName("Time");
timeDim.setTime(true);

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Tool Initialization

Key Components/Events:

• Physical generation of data warehouse

• Meta data initialization of JMI-enabled data warehousing
tools

• Data warehouse administration tool interfaces central
with meta data service

• Either programmatic (JMI) access to shared meta data or
bulk interchange (XMI)

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Tool Initialization (cont)

XmiReader.read()

JMI-Enabled
Metadata
ServiceData Warehouse

Administration Console

Connection and
JMI XMIReader calls;
tool-specific API calls

ETL
Tool

Operational
Data Store
(RDBMS)

Analysis Store
(RDBMS)

OLAP
Server

Connection and
JMI metamodel-specific
interface calls

XMI stream-based importation of
CWM metadata

XmiReader.read() XmiReader.read() XmiReader.read()

<package>.get<metaclass>()
XmiWriter.write()

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Metamodel Interoperability

Key Components:

• Advanced functionality based on MOF/JMI Reflection

• Metamodel-level interoperability

• OLAP Server (based on CWM OLAP metamodel)

• Advanced multidimensional visualization/reporting tool
(MOF-compliant metamodel other than CWM)

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Metamodel Interoperability (cont)

Key Events:

• Modeler connects to central meta data service

• Defines an instance of CWM Visualization metamodel
and connects to OLAP model

• Develops dynamic programmatic script (Java) that uses
JMI Reflective calls to initialize the non-CWM
visualization tool based on the CWM OLAP+Visualization
models

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Metamodel Interoperability (cont)

JMI-Enabled
Metadata
ServiceMetadata Visual

Modeling Tool

OLAP
Server

Connection and
JMI Reflective API calls

Multidimensional
Visualization Tool

Tool Setup Screen

Connection and
JMI metamodel-specific
(tailored) API calls

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Data Warehouse Information Flow

Key Components:

• Fully-integrated information supply chain

• Integration via centralized shared meta data and meta data
–driven tools

• Meta data communication via JMI programmatic API and
bulk interchange (XMI)

• MOF/JMI Reflection used to reconcile meta data
integration between tools based on dissimilar metamodels

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Data Warehouse Information Flow (cont)

Operational
Data Store

Analysis Store
(star schema)ETL OLAP Visualization

General direction of the flow of data

Lineage tracing and drill-back

JMI-Enabled
Metadata
Service

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Advanced Analytics Scenario: Data
Warehouse Backend

Java
application
component

Meta Data
Repository

Meta data
modeling, authoring,

browsing

Data
Source

OLAP
Server

Data Mining
Tool

Meta data-driven
data import

Meta data-driven
data import

Meta data import via CWM and XML
(OLAP model + mapping to data source)

JOLAP
Resource
Adapter

XMLA
Provider

JDMAPI
Resource
Adapter

XMLA
Provider

Web-based
client

JOLAP API
calls

JDMAPI
calls

XMLA
Discover & Execute

XMLA Discover & Execute

Meta data-driven
data access

Meta data import via CWM and XML
(DM model + OLAP + mapping

to data source)

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Why Metadata Interchange Patterns?

CWM is a language for describing meta data to be
interchanged.

CWM is highly flexible and expressive.

CWM does not, however, provide a means of
expressing the intent, or intended semantics, of the
content of an XMI file (this is beyond the scope of
CWM).

Analog: English language sentences relative to
context of a conversation; sense versus senselessness.

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Why Metadata Interchange Patterns?

It might be reasonable to assume that an CWM XMI
file contains a syntactically valid instance of the
CWM metamodel (i.e., can always validate against
the CWM DTD before exploring the model).

But is it reasonable to assume that an XMI file
(whose content is currently unknown) contains a
CWM instance that is meaningful to me?

For example: An instance of the CWM Relational
metamodel organized as a Star or Snowflake schema.

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Defining Metadata Interchange Patterns

1. Projection (or semantic context): Portions (sub-
graphs) of the CWM metamodel that are
semantically meaningful for some given
interchange scenario.

2. Restriction: Boundaries on the number of
instances of certain model element instances (or
constraints on their values).

3. Anchor: Starting element(s) for search of
projected/restricted instances.

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Defining Metadata Interchange Patterns

Definition:

A CWM Metadata Interchange Pattern is an
identified projection of the CWM metamodel,
optionally with restrictions on instances of that
projection, and possibly with one or more
specified anchor elements.

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Specifying Metadata Interchange Patterns

Mechanisms for pattern specification:

Human readable formal specification – Enumerates
classes and associations of the projection as
literals, along with OCL expressions restricting
instances of the projection. (see CWM
Developer’s Guide – John Wiley & Sons, 2003)

Machine readable (and interchangeable) formal
metamodel – References (directly or indirectly)
classes and associations of the projection, along
with OCL constraints restricting instances of the
projection. (OMG CWM MIP RFP)

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Summary
Model-driven data warehouse management based on

CWM, UML, XMI, MOF, JMI

Model-driven analysis based on CWM, JMI, JOLAP,
JDMAPI, and XMLA

Emphasis on model-based specification of the data
warehouse and automated generation of the
physical warehouse using meta data-driven tools

Bi-directional information supply chain

Enhanced ROI by reducing overall integration and
life cycle costs

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Summary (cont)

Use of standardized meta data interchange to enhance
overall interoperability and simplify tool
construction

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Additional Sources of Information

CWM Forum Web site: http://www.cwmforum.org

CWM Book Series Web site:
http://www.wiley.com/compbooks/poole

OMG CWM Resource page:
http://www.omg.org/technology/cwm

OMG MDA page: http://www.omg.org/mda

Java Community Process home page: http://jcp.org

XMLA home page: http://xmla.org

Integrate.2003: Model-Driven Data Warehousing (Poole). Copyright © 2003 by John Poole. All Rights Reserved.

Additional Sources of Information

http://www.wiley.com/legacy/compbooks/poole/CW
M_Guide/patterns.html

http://www.wiley.com/legacy/compbooks/poole/patte
rns/StarJoin.pdf

